The Ga-Ge-Ni (Gallium-Germanium-Nickel) System

K.P. Gupta, The Indian Institute of Metals

Introduction

The Ga-Ge-Ni system was investigated at only one temperature. A partial isothermal section was established in the Ga-Ge-Ni system. A large number of ternary intermediate phases exist in the investigated region of the Ga-Ge-Ni system.

Binary Systems

The Ga-Ni system [1991Nas] (Fig. 1) shows the presence of seven intermediate phases: GaNi₃ (β), Ga₃Ni₅ (δ'), Ga₂Ni₃ (ε), GaNi (ν), Ga₄Ni₃ (θ), Ga₃Ni₂ (β'), and Ga₄Ni (ρ). The Ga₂Ni₃ phase has an allotropic form γ' at < 680 °C. The GaNi phase melts congruently at 1220 °C at ~35 at.% Ga. The GaNi₃ (β), Ga₃Ni₂ (β'), and Ga₄Ni (ρ) phases form through peritectic reactions: L + $\gamma \leftrightarrow \beta$, at 1212 °C, L + $\nu \leftrightarrow \beta'$ at 895 °C, and L + $\beta' \leftrightarrow \rho$ at 363 °C, where γ is the face-centered-cubic (fcc) terminal solid solution of Ga in Ni. Possibly a peritectic reaction L + $\rho \leftrightarrow$ (Ga) occurs at ~30 °C. A eutectic reaction L $\leftrightarrow \beta + \nu$ occurs at 1207 °C. The δ' , ε , and θ phases form through peritectoid reactions $\nu + \beta \leftrightarrow \varepsilon$ at 949 °C, $\varepsilon + \beta \leftrightarrow \delta'$ at 741 °C, and $\nu + \beta'$ $\leftrightarrow \theta$ at 542 °C.

The Ga-Ge system [Massalski2] (Fig. 2) is a simple eu-

tectic system with $L \leftrightarrow (Ge) + (Ga)$ reaction occurring close to Ga at ~29.77 °C.

The Ge-Ni system [1991Nas] (Fig. 3) has nine intermediate phases: βGeNi_3 (β), $\gamma' \text{GeNi}_3$ (α'), $\delta \text{Ge}_2 \text{Ni}_5$ (δ), GeNi₂ (π), ε Ge₃Ni₅ (ε), ε 'Ge₃Ni₅ (ε '), Ge₁₂Ni₁₉ (ζ), Ge₂Ni₃ (ξ), and GeNi ($\dot{\iota}$) of which the β and ε phases melt congruently at 1132 and 1185 °C, respectively. The $\varepsilon \leftrightarrow \varepsilon'$ transformation occurs congruently at ~398 °C. The γ , δ , ζ , ξ , and i phases form through peritectic reactions: L + $\beta \leftrightarrow$ γ at 1118 °C, L + $\alpha \leftrightarrow \delta$ at 1102 °C, L + $\varepsilon \leftrightarrow \zeta$ at 1050 °C, L + $\zeta \leftrightarrow \xi$ at 990 °C, and L + $\xi \leftrightarrow i$ at 850 °C. The π phase forms through a peritectoid reaction $\beta + \varepsilon \leftrightarrow \pi$ at 506 °C. Three eutectic reactions $L \leftrightarrow \alpha + \beta$, $L \leftrightarrow \delta + \varepsilon$, and $L \leftrightarrow$ i + (Ge) occur at 1124, 1099, and 762 °C, respectively. The γ and δ phases exist only at high temperatures and undergo eutectoid transformation $\gamma \leftrightarrow \beta + \delta$ and $\delta \leftrightarrow \beta + \varepsilon$ at 1082 and 1045 °C, respectively. The ζ , ξ , and ε phases undergo four eutectoid transformations: $\xi \leftrightarrow \zeta + i$, $\varepsilon \leftrightarrow \varepsilon' + \zeta$, $\zeta \leftrightarrow \varepsilon' + i$, and $\varepsilon \leftrightarrow \pi + \varepsilon'$ at 515, ~394, 382, and 290 °C, respectively.

Binary and Ternary Phases

The three binary systems of the Ga-Ge-Ni system have sixteen intermediate phases with one of the phases in the

Fig. 1 Ga-Ni binary phase diagram [1991Nas]

Fig. 2 Ga-Ge binary phase diagram [Massalski2]

Fig. 3 Ge-Ni binary phase diagram [1991Nas]

Ga-Ni system having an allotropic form at lower temperature. The investigated region of the Ga-Ge-Ni system has seven intermediate phases. The phases and their structure data are given in Table 1.

Ternary System

In an exploratory work on $T-\beta^3-\beta^4$ systems, where T = Mn, Fe Co, Ir, Ni, and Pd, $\beta^3 = Al$ and Ga, and $\beta^4 = Si$ and Ge, [1969Pan] studied the Ga-Ge-Ni system. To pre-

Phase designation	Composition	Pearson's symbol	Space group	Туре	Lattice parameters, nm		
					a	b	с
(Ga)	(Ga)	oC8	Cmca	αGa			
(Ge)	(Ge)	cF8	$Fd\overline{3}m$	C(diamond)			
(Ni)	(Ni)	cF4	$Fm\overline{3}m$	Cu			
β	GaNi ₃	cP4	$Pm\overline{3}m$	AuCu ₃	0.35850		
ν	GaNi	<i>cP</i> 2	$Pm\overline{3}m$	Cscl	0.2873		
ε	Ga ₂ Ni ₃	hP4	P63/mmc	AsNi	0.3995		0.4980
α′	Ga ₂ Ni ₃				1.3785	0.7883	0.8457
						$\beta = 35.9^{\circ}$	
δ'	Ga ₃ Ni ₅	oC16	Cmcm	Ga ₃ Pt ₅	0.376		0.339
θ	Ga ₄ Ni ₃	<i>cI</i> 112	Ia3d	Ga ₄ Ni ₃	1.141		
β′	Ga ₃ Ni ₂	hP5	$P\overline{3}m1$	Al ₃ Ni ₂	0.405		0.489
ρ	Ga ₄ Ni	cI52	$I\overline{4}3m$	Cu ₅ Zn ₈	0.8406		
β	βGeNi ₃	cP4	$Pm\overline{3}m$	AuCu ₃	0.357		
α'	α' GeNi ₃						
δ	δGe ₂ Ni ₅	hP84	$P6_3/mmc$	Pd_5Sb_2	0.6827		1.2395
π	GeNi ₂	oP12	Pnma	Co ₂ Si	0.7264	0.511	0.383
ε'	$\epsilon' Ge_3 Ni_5$	mC32	<i>C</i> 2	Ge ₃ Ni ₅	1.1682	0.6737	0.6364
						$\beta = 52.1^{\circ}$	
ε	εGe ₃ Ni ₅	hP4	$P6_3/mmc$	AsNi	0.3955		0.5047
ζ	Ge ₁₂ Ni ₁₉	mC62	<i>C</i> 2	Ge ₁₂ Ni ₁₉	1.1631	0.6715	1.0048
						$\beta = 90^{\circ}$	
ξ	Ge ₂ Ni ₃	nP4	$P6_3/mmc$	AsNi	0.386		0.500
i	GeNi	oP8	Pnma	MnP	0.581	0.538	0.343
Φ	GaGe ₃ Ni ₂		Bba	CoGe ₂	0.5725	0.5725	1.0815(a)
Λ	GaGe7Ni8		C2/m	CoGe	1.1618	0.3784	0.4904(a)
						$\beta = 102.49^{\circ}$	
Δ	Ga ₃ Ge°Ni ₄	С	P2 ₁ 3	FeSi			
Σ	GaGe ₂ Ni ₄	h		Superstructure related	0.783		1.5005(b)
				to AsNi			
Ψ	GaGeNi ₂						
Ω	GaGeNi ₃	0		Superstructure related to AsNi	0.7909	1.3665	2.0023(b)
Г	GaGe ₃ Ni ₄		Pnma	GaGe ₃ Ni ₄	0.4934	0.3844	1.1412(a)
(a) Lattice para	emeters from [1969	PPan]. (b) Lattice parame	ters from [1973Ell]				

Table 1 Phase present in Ga-Ge-Ni ternary system and their structure data

pare the alloys >99.5 mass% pure component elements were arc melted under an argon atmosphere. The alloys were homogenized in sealed quartz capsules, and temperature and time for homogenization were not mentioned. Powder specimens for x-ray diffraction (XRD) were annealed at 700 °C for 12 to 48 h in sealed quartz capsules and water quenched. XRD was used for phase identification and the Weissenberg single crystal method was used for structure determination of a few ternary intermediate phases. Besides the Ga_3GeNi_4 phase (Δ), which was earlier reported by [1957EB1], existence in the Ga-Ge-Ni system of five new ternary phases were found. For three of these phases, GaGe₃Ni₂ (Φ), GaGe₇Ni₈ (Λ), and GaGe₃Ni₄ (Γ) , crystal structures were determined. Crystal structure determinations have not been reported for the other three ternary phases, Σ , Ψ , and Ω . Two of these, Ψ and Ω , had previously been reported by [1969Pan] who had designated them X and Y. The studies of [1969Pan] were the basis of a proposal for a tentative partial ternary phase diagram, which showed the approximate locations of these two ternary phases.

[1973Ell] made a more complete investigation of the Ga-Ge-Ni system. In this investigation >99.9 mass% pure elements were used for arc melting of alloys, and the alloys were homogenized at 700 °C for 12 h. The alloys were then annealed at 700 °C for 24 to 48 h and characterized using metallography, XRD with crystal structures of a few phases being determined by the Weissenberg single crystal method. [1973Ell] reported the presence of seven ternary intermediate phases in the Ga-Ge-Ni system, including the phases reported earlier by [1957Lin] and [1969Pan]. Two isostructural phases of the Ga-Ni and Ge-Ni systems, namely the GaNi₃ and GeNi₃ (β phases) and the Ga_2Ni_3 and Ge_3Ni_5 (ε phases), were found to form two continuous series of solid solution phase regions at 700 °C. The X and Y phases of [1969Pan] were identified as the GaGeNi₃ (Ω) and GaGeNi₂ (Ψ), respectively. A ternary intermediate GaGe₂Ni₄ (Σ) was also identified, but its

Fig. 4 The 700 °C isothermal section of the Ga-Ge-Ni system [1973Ell]. The dashed lines indicate probable boundaries of the phase regions.

0.515

crystal structure was not determined. The phase boundaries of all the phases were determined and a proposed phase equilibria for the Ga-Ge-Ni system at 700 °C is shown in Fig. 4.

Because of the concentration of [1973Ell]'s work in the Ni-rich region, the diagram in Fig. 4 is better defined on the high Ni side of the (Ge)-(Ga₂Ni₃) line and quite tentative on the Ga-rich side of that line. The fcc γ phase boundary was not determined by [1973Ell] and is shown schematically in Fig. 4 on the basis of the binary solid solubility data of Ga and Ge in Ni at 700 °C. The β and ε phase regions extend from the Ga-Ni binary to the Ge-Ni binary. The ε phase was found in equilibrium with the ν , Ω , Σ , Γ , and i phases. The Δ phase was found in equilibrium with the ν , Ω , and β' phases, and the Ψ phase was found in equilibrium with the β' , Ω , Σ , and Γ phases. The Λ phase was found in equilibrium with the β' , Γ , Φ , and i phases, and the Φ phase was found in equilibrium with the i, Λ , β' , and (Ge) phases. The β' phase was also found in equilibrium with the (Ge) terminal solid solution phase. On the high Ga side of the β' -(Ge) line no investigation was carried out. From the binary data on Ga-Ni and Ga-Ge systems, it may be reasonable to assume the presence of a liquid region (L) at the Ga corner of the isothermal section at 700 °C. Schematically the liquid region is shown in Fig. 4. If no other intermediate phase exists in the (Ge)- β' -Ga region, then a wide three phase triangle L + β' + (Ge) should exist in this region, which is also indicated in Fig. 4.

Fig. 5 Variation of lattice parameters of the ε phase along the Ga₃₇Ni₆₃-Ge₃₇Ni₆₃ line as a function of Ge content

(Fig. 4) appears to be well established; there remain certain discrepancies related to the phase boundaries of the binary phases β , ε , i, and β' . The accepted Ga-Ni and Ge-Ni binary

While the 700 °C isothermal section of the Ga-Ge-Ni

Section II: Phase Diagram Evaluations

diagrams indicate the i and β' phases to be of invariant composition, whereas they are shown in Fig. 4 with reasonably wide phase regions. The β phase region is somewhat wider on the Ga-Ni side, whereas the ε phase region at the Ge-Ni binary limit is comparatively narrow compared to what is shown in Fig. 4. The probable phase boundaries of the β , ε , i, and β' phases are indicated in Fig. 4 by dashed lines. The β , ε , i, and β' phase boundaries as well as some of the three phase equilibrium triangles involving these phases should be redetermined.

[1976EII] reported the lattice parameters of the ε phase alloys along the Ga₃₇Ni₆₃-Ge₃₇Ni₆₃ line as a function of Ge content (Fig. 5). The lattice parameters of the ε phase were found to vary linearly with Ge content over most of the composition but with the *c* parameter developing a slight curve near the Ni-Ge binary boundary.

References

- **1957EBI:** P. EBlinger and K. Schubert, *Z. Metallkde*, 1957, Vol 48, p 126 (Quoted by [1973Ell])
- **1969Pan:** P.K. Pandey and K. Schubert, *J. Less Comm. Metals*, 1969, Vol 18, pp 175-202, (in German) (Phase Equilibria, Crys Structure, #)
- **1973Ell:** M. Ellner and K. Schubert, *Z. Metallkde*, 1973, Vol 64, p 786-789. (in German) (Phase Equilibria, #)
- **1976Ell:** M. Ellner, *J. Less Comm. Metals*, 1976, Vol 48, p 21-52 (in German) (Structure)
- **1991Nas:** P. Nash, *Phase Diagrams of Binary Nickel Alloys*, ASM International, Materials Park, OH (Review)

#Indicates presence of phase diagram.

Ga-Ge-Ni evaluation contributed by **K.P. Gupta**, The Indian Institute of Metals, Metal House, Plot 13/4, Block AQ, sector V, Calcutta, India. Literature searched through 1993. Dr. Gupta is the Alloy Phase Diagram Program Co-Category Editor for ternary nickel alloys.